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Current and Future Uses 
of Liquid Biopsies

Liquid biopsies – a less invasive way to identify  
biomarker profiles1–3

Liquid biopsy biomarker testing utilizes body fluids, typically blood,* to detect ctDNA, ctRNA, 
CTC, and exosomes for genomic testing1–3

Most available assays:

Requires a blood sample 
(typically 6–10 mL)1,3

Analyze ctDNA to assess 
genomic alterations1

Commonly utilize NGS, 
with PCR and ddPCR as 
alternative methods1,3

Clinical utility has been established and approved for predictive biomarker 
testing to inform some available targeted treatments1–4

Emerging uses for liquid biopsy-based assays include multi-cancer early  
detection (MCED), minimal residual disease (MRD) testing, and use of  
fluids other than blood4,5

*Urine, saliva, CSF, and other bodily fluids may also be used for diagnosis, disease monitoring, or assessing acquired resistance.1,3
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Multiple factors may influence liquid biopsy assays 
and lead to false negative or false positive results4

Liquid biopsy test results may be impacted by

ctDNA concentration
• Refers to the amount 

of ctDNA relative to the 
amount of ‘normal’ DNA4

• Impacted by:
• Tumor burden  

and vascularity1

• Tumor shedding3

• Specimen handling6

Variant allele  
frequency (VAF)
• Refers to the proportion 

of tumor cells that have 
the variant allele or  
genetic alteration4

• Impacted by: 
• Tumor heterogeneity2

• Tumor evolution7

• Tumor size/volume7

Limit of detection (LOD)
• Refers to the minimum 

concentration of an 
analyte that can be 
reliably detected4,8

• Impacted by: 
• Testing technology8

• Assay design4 
• Specimen handling6

Clonal hematopoiesis of 
indeterminate potential 
(CHIP)
• Refers to the presence of 

somatic mutations that 
drive clonal expansion 
of hematopoietic stem 
cells, without evidence of 
hematologic malignancy9

• Impacted by: 
• Age4

• Smoking4

• Prior chemotherapy/
radiotherapy4,10

Linked with false negatives

• Samples with low tumor shedding, low ctDNA, and/or low VAF are  
more likely to have a false negative result4

• Assays with a high LOD are more likely to have false negatives5,6

Linked with false positives

• Advanced prostate, lung, and breast 
cancers are more likely to have false 
positives due to overlap between  
CHIP-related and solid tumor mutations 
(eg, TP53, ATM, CHEK2)4,9

Liquid biopsy can be considered1:
• As a complement to tissue testing to assess actionable alterations and monitor treatment response
• Where tissue biopsy cannot be performed or is inadequate
• When archival tissue is very old or damaged
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Liquid biopsy has demonstrated utility to aid  
in treatment selection in patients with some  
advanced disease1

Testing  
results

Sample 
processing

• LOD can be impacted by amount of nucleic acids,  
WBC lysis, and contamination by aerosolized  
nucleic acids6

Opportunity to optimize

Proper and timely sample processing may help 
ensure integrity of ctDNA anaylsis6

Samples with ctDNA tumor fraction (TF) ≥1% and a 
negative liquid biopsy are unlikely to have a driver 
mutation on tissue testing, which means they are 
true negatives14

Guidelines recommend using both tissue and liquid 
biopsies simultaneously or sequentially to aid in 
clinical decision-making12,17*

• Liquid biopsy may have more rapid overall TAT compared  
with tissue-based NGS1,11

• It may be associated with false negatives (up to 30%) or may 
identify variants of uncertain significance (VUS)12,13*

• Positive test result may direct treatment selection2,3,15

• Negative test result requires reflex testing of tissue sample16

Liquid biopsy may be a valuable tool for early  
cancer detection across multiple tumor types5
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Detection considerations: ctDNA levels are proportional to tumor burden18

• Larger tumors, fast growing malignancies and advanced or  
metastatic disease are more likely to have detectable levels  
of circulating markers1,3,19,20

• To identify patients with early-stage disease and/or a low 
tumor burden, more sensitive assays and/or new markers 
are needed1,3,19

Advances in genomics and machine learning have enabled the development of new assays that have 
increased sensitivity and/or examine methylation patterns, to help overcome this barrier3,20

Treatment 
decisions

Proof of concept:
The PATHFINDER study, a prospective 
multicenter trial, demonstrated the 
potential of multi-cancer early detection 
(MCED) testing in clinical practice by 
analyzing circulating free DNA (cfDNA) 
and methylation signatures20

Assay20: 
• Uses methylation patterns in cfDNA to detect cancer
Performance20:
• Among positive cases, 38% were confirmed to have cancer 
• 98.6% of the time was able to accurately identify no disease 
Implications20:
• PATHFINDER provided early evidence of the feasibility of MCED assays
• MCED assay detected many cancer types for which screening tests do not exist
• Still a need for confirmative diagnostic assessments to confirm a positive result

MCED assays using liquid biopsy may facilitate the early detection of multiple cancers in patients 
with non-specific symptoms, but positive results should be confirmed with diagnostic testing5,20

*NCCN makes no warranties of any kind whatsoever regarding their content, use, or application and disclaims any responsibility for their application or use in any way.
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Evaluating MRD through ctDNA may be a valuable 
prognostic tool and inform treatment decisions4

In patients with solid tumors, MRD refers to the presence of residual cancer cells in early-stage disease  
following treatment with curative intent. ctDNA assays may be used for its detection4,21

Types of ctDNA assays for MRD detection6,21*

Tumor-informed assay

• Guided by patient-specific alterations previously identified via  
NGS of tumor tissue6,21

• Genomic profile from tumor tissue may not reflect all mutations21

• May also be referred to as bespoke assay6

Tumor-agnostic assay

• Uses common mutated genes and/or methylated vs unmethylated 
DNA that has been validated across various cancers6

• Preferred choice for efficiently detecting targeted  
genomic alterations21

• May yield a false negative result if the patient’s cancer harbors 
mutations that are not included in the assay’s targeted gene panel6

ctDNA detection in patients with eBC following 
treatment with curative intent predicted early 
relapse with a median lead time of 7.9 months22

In a study of patients with colorectal cancer  
pre- and post-surgery, ctDNA status was the 
most significant prognostic factor for relapse-
free survival23

Detection of MRD via ctDNA in blood, urine, or CSF may help inform adjuvant treatment decisions, 
but more data are needed to establish clinical utility4,21

Current and future uses of liquid biopsies summary

Liquid biopsy has the potential to support the entire cancer care journey by enabling early 
detection, guiding treatment selection, and monitoring MRD and treatment response across 
multiple cancer types3–6

Initiation and interpretation of liquid biopsy involves assessing the most suitable sample type  
for patient’s cancer and considering aspects of the sample and test that may impact the  
accuracy of results3,4

Liquid biopsy tests have shown clinical utility for predictive biomarking identification in  
some cancers3

Further studies are needed to validate the clinical utility of liquid biopsy for MCED, MRD, and its 
broader adoption in clinical practice, as well as for the future development of assays4,6

*Long-term prospective studies are needed to validate ctDNA-based MRD detection for clinical practice.4,6
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Artificial intelligence (AI) technologies have the  
potential to enhance the quality of healthcare24

Artificial Intelligence in Healthcare

AI refers to the simulation of human intelligence in computer systems, enabling them to perform tasks like 
learning and problem-solving24

Stages in AI system development

Definition of intended use25,26

Identify scope, feasibility, 
and stakeholders

Model design and training25,26

Use prepared data for model training 
based on appropriate algorithms

Deployment26

Integrate into the system and 
interact with users

Data management26

Involves collection and labeling  
of data

Validation25

Test performance of the model 
retrospectively and prospectively*

Some AI-enabled devices go through regulatory review prior to deployment.  
However, such a step does not exist for many AI systems25,27,28†

Medical imaging, digital pathology,  
and diagnostics29,30

Patient engagement and compliance29

Applications in healthcare‡

Virtual patient care and monitoring29 Rehabilitation and sports medicine29

Drug discovery and precision 
medicine29,30

Administrative applications and 
pharmacy services29

*Retrospective validation tests AI with historical data, while prospective validation evaluates it using data collected in real time according to predefined protocols that 
reflect actual practice.25

†AI/ML-based software, when intended to treat, diagnose, cure, mitigate, or prevent disease or other conditions, are medical devices under the FD&C Act and called 
“software as a medical device” (SaMD) and are subject to FDA regulation. Non-device software functions intended (1) for administrative support, (2) for maintaining a 
healthy lifestyle, (3) to serve as electronic patient records, (4) for transferring, storing, converting formats, or displaying data, or (5) to provide certain, limited clinical 
decision support are not medical devices and are not subject to FDA regulation.25,27,28

‡These are only some examples of AI applications in healthcare and not an exhaustive list.
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A closer look at AI terminology and applications
AI terminology Applications

Artificial intelligence
An umbrella term that covers multiple approaches, 
including distinct algorithms that each have  
unique assumptions27,31,32

Machine learning
A type of AI where relationships derived 
from data can be used to make predictions 
or decisions27,31,32

Deep learning
A type of machine learning that utilizes 
artificial neural networks (a type of  
software architecture)31,32

Traditional

• Used to predict categorical labels, continuous values, or binary responses31

• Concerns include accuracy, generalizability, and biases in training data33

Example: Computational pathology to discover novel biomarkers32

Generative

• Used to create a statistically probable output (text, images, or other 
content) that is similar but not identical to training data34

• Concerns include accuracy, variability, sycophancy (answer mirrors  
prompt too closely), hallucinations, and biases in training data35

Example: Large language models like ChatGPT34,35

Large language models in clinical practice

Large language models (LLMs), like ChatGPT, LLaMA, and Bloom, are AI models that can generate 
human language and perform natural language processing (NLP) tasks36

Potential uses

• Pathology diagnosis/screening37,38

• Potentially imitate advanced clinical reasoning 
processes to arrive at an accurate diagnosis38 

• Summarization systems39

• Simplifying documentation tasks, such as patient 
visit notes40

• Analyze and distill essential findings from clinical  
trial reports similar to systematic reviews39 

• Treatment decisions37

• Matching treatment options with genetic 
alterations37

Concerns

• Potential bias in training data40

• Data privacy40

• Not FDA-approved or regulated27

• Misinformation40

• Propensity to generate hallucinations, which 
are outputs that, while seemingly believable, are 
factually incorrect36,38,40

• Lack of accountability40

• Unclear legal liability in the potential case that an LLM 
recommendation results in patient harm41

LLMs’ potential utility to support clinical decision-making does not yet have the quality  
and credibility required to safely provide accurate treatment recommendations37
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Computational pathology uses machine learning to 
improve diagnostics24,33,42

Traditional pathology 

Pathologist manually examines 
histological samples and/or digital  
images of patient specimens42

Computational analysis using AI methods, 
such as machine learning, is used to 
analyze patient specimens and data42

Machine learning-based approaches might use33,42:

Supervised learning, which 
uses human-managed 
workflow with labeled data to 
provide explicit feedback to 
guide the learning process

Semi-supervised learning, 
which uses a combination of 
labeled and unlabeled data 
for model training, while also 
involving a human user

Unsupervised learning, 
which trains a model based on 
inherent patterns of the data 
without the use of labels to 
guide the learning process

Machine learning can be used to build clinical decision support (CDS) systems to assist 
diagnosis, identify novel features, and correlate images to patient outcomes33,42

Image-based CDS tools have emerged for a variety  
of uses in oncology24,30,33,42

• Detect the presence of tumors on H&E-stained tissue42*
• Assess PD-L1 expression via IHC24,30

• Differentiate between primary and metastatic tumors30

• Predict ICI response in NSCLC30

CDS systems may also include the analysis of  
non-imaging data24,30,33

• Biomics data (genomics, transcriptomics, circulating 
immune profiling, single-cell analysis, metabolomics, 
microbiome)30

• EHRs and patient data24,33

Computational pathology aims to reduce errors in diagnosis and classification, improve diagnostic accuracy, 
optimize patient care, and improve operational efficiencies by bringing global collaboration24,33,42

*Whole-slide imaging (WSI) is often used, which allows for the digitalization of an entire slide image and allows researchers to identify features not easily analyzed by 
visual evaluation alone.42

Computational pathology 
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Barriers to adoption of computational  
pathology algorithms
Considerations for developing and implementing machine  
learning-based CDS systems

AI development needs

IT infrastructure
• Requires a significant investment in IT infrastructure, from processing speeds and memory requirements to data storage  

and network speeds24,42

Data privacy and security
• Storing large amounts of medical data in cloud-based systems requires cybersecurity measures to protect sensitive patient data42

Acquiring training data
• Large datasets, from a wide variety of data sources, are critical for developing and training an AI system that can  

handle variation24,30,42

• For supervised algorithms, this includes using sufficient and suitable “ground truth” data, which provide appropriate  
diagnostic context33,42

Generalizability

Variability between AIs
• AIs developed for the same use (eg, assess PD-L1 expression in lung cancer) may not perform equally well based on differences  

in the training and validation datasets42

Validation in clinical practice
• AI systems need to be clinically validated prior to being integrated into clinical workflows24,33

Sample variability
• Even in validated AIs, differences in sample preparation (eg, staining variation, air bubbles, tissue thickness) can lead to  

inaccurate results24,33

Human user engagement

Computational pathology team
• Efficient algorithms will require the engagement of a multidisciplinary team that includes pathologists, data scientists,  

and engineers24,30

Role of the pathologist
• Approve the results from the algorithm and support its training24,42

• Widen their expertise to include AI technology24

• Ensure the algorithm is optimized to work as it was designed24,42

Computational pathology may help facilitate a more efficient pathology workflow  
by increasing the speed and accuracy of diagnosis24,42
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Artificial intelligence in healthcare summary

AI algorithms are trained and validated on specific datasets and include limitations and biases 
within that dataset, which can impact the output31–33

A validated computational pathology AI algorithm may not be generalizable to samples at a 
separate lab due to differences in sample preparation33

While the application of large language models for clinical support is promising, problems 
with accuracy, hallucinations, and sycophancy may occur35–38,40

New regulatory frameworks are needed to evaluate the risks and benefits of AI clinical 
decision support tools before they are integrated into clinical practice27,41



AI, artificial intelligence; ATM, ataxia-telangiectasia mutated; CDS, clinical decision support; cfDNA, circulating free deoxyribonucleic acid; CHEK2, checkpoint 
kinase 2; CHIP, clonal hematopoiesis of indeterminate potential; CSF, cerebrospinal fluid; CTC, circulating tumor cell; ctDNA,  circulating tumor deoxyribonucleic acid;  
ctRNA, circulating tumor ribonucleic acid; ddPCR, droplet digital polymerase chain reaction; DNA, deoxyribonucleic acid; eBC, early breast cancer; EHR, electronic 
health record; FDA, Food and Drug Administration; FD&C, Federal Food, Drug, and Cosmetic Act; H&E, hematoxylin and eosin; ICI, immune checkpoint inhibitor;  
IHC, immunohistochemistry; IT, information technology; LOD, limit of detection; LLM, large language model; MCED, multi-cancer early detection; ML, machine learning;  
MRD, minimal residual disease; NCCN, National Comprehensive Cancer Network; NGS, next-generation sequencing; NLP, natural language processing; NSCLC, non–
small cell lung cancer; PCR, polymerase chain reaction; PD-L1, programmed death-ligand 1; SaMD, software as a medical device; TAT, turnaround time; TF, tumor fraction;  
TP53, tumor protein 53; VAF, variant allele frequency; VUS, variant of uncertain significance; WBC, white blood cell; WSI, whole-slide imaging.
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